Wetland \& Waterway Consulting, LLC
Dave Meyer
S83 W23915 Artesian Avenue • Big Bend, WI 53103
262-719-4286 • Fax 262-364-2197
E-Mail •dave@wetlandwi.com

Mr. Matt Mehring
Anderson Ashton, Inc.
2746 S. $166^{\text {th }}$ Street
New Berlin, WI 53151

Dear Mr. Mehring:
Wetland \& Waterway Consulting (WWC) has conducted a wetland delineation on property located in Sec. 1, T3N, R19E, Village of Waterford and Sec. 36, T4N, R19E Village of Waterford, Racine County. The delineation was conducted on 6-1-18 at your request. This site is under consideration for future development; therefore, location of the wetlands prior to construction is necessary. The purpose of the delineation was to identify and flag all wetlands within the boundaries identified on the attached maps.

Investigator

Dave Meyer, lead delineator, is an independent environmental consultant providing wetland delineations, environmental permitting services, site assessments, and planning advice. He obtained a master's degree in Natural Resources Management from Southern Illinois University-Carbondale in 1977. Mr. Meyer has held technical and administrative positions in wetland and water resources specialties with the Wisconsin Department of Natural Resources and the U.S. Army Corps of Engineers. He has satisfactorily completed the Reg IV Wetland Delineation training offered by the U.S. Army Corps of Engineers, the Advanced Wetland Delineation training conducted by the University of Wisconsin-LaCrosse in 2002 and 2007, the USACOE/WIDNR 1987 Wetland Delineation Manual Midwest Region Supplement Training in 2009, the USACOE/WIDNR 1987 Wetland Delineation Manual Northcentral/Northeast Region Supplement Training in 2010, the Basic Hydric Soil ID training conducted by the University of Wisconsin-LaCrosse in 2011, the Wetland Training Institute's Advanced Hydrology for Jurisdictional Determinations in 2016, and the SEWRPC Environmental Corridor Delineation Workshops in 2004 and 2015. Mr. Meyer is recognized by the Wisconsin Department of Natural Resources as an Assured Delineator.

Kristi Sherfinski has over 17 years of experience delineating wetlands in the Great Lakes Region. She received her initial basic wetland training at the Wetland Training Institute in Hastings, Michigan in 2002. Kristi worked as a project manager and wetland delineator at JFNew \& Associates in Grand Haven, Michigan for six years, conducting wetland delineations in Michigan, Indiana, Illinois, and Wisconsin. Kristi then moved to Wisconsin to work for the Southeastern Wisconsin Regional Planning Commission (SEWRPC) under the supervision of Dr. Donald Reed. At SEWRPC, Kristi updated the Wisconsin Wetland Inventory (WWI) in 2005 and in 2010 for the seven county area of southeast Wisconsin. Kristi participated in the Critical Methods in Wetland Delineation (Assured Wetland Delineator) training in 2006. In 2009, she attended the Wetland Delineation USACE Regional Supplement training session, the Environmental Corridor Delineation Workshop, and the Farm Service Agency (FSA) Slide Review training session. After working at SEWRPC for seven years, Kristi worked as an environmental specialist at JSD Professional Services, Inc. for two years.

Methods

The site visit was conducted according to the guidelines identified in the U.S. Army Corps of Engineers' 1987 manual and the Northcentral/Northeast Regional Supplement. The plot size used was a 30 foot radius circle for trees, shrub/saplings, and woody vines, and a 5 foot radius circle for herbaceous vegetation. Resources utilized in the investigation included the NRCS county soil survey, Wisconsin Wetland Inventory mapping, topo mapping, aerial photos, county plat mapping, The Vegetation of Wisconsin, Wetland Plants and Plant Communities of Minnesota and Wisconsin - 3rd Edition, A Field Guide to Wildflowers of Northeastern and Northcentral North America, and Plants of the Chicago Region. Sampling points were located in the areas that exhibited wetland characteristics as well as upland characteristics. Data was collected on the vegetation, soils, and hydrology at each sampling point. The wetlands were identified using the technical approach described in the USACOE 1987 Manual. The wetland boundary was flagged using breaks in topography, transitions between hydric and upland vegetation, identification of wetland hydrology, and the presence of hydric soils. Roadside ditches were identified if they displayed hydric vegetation. Flags were placed in the middle of the ditches at their beginning and ending points for the surveyor to locate. If the ditch was very long or had unusual bends or turns in it, additional flags were placed within the central parts of the ditch to assist in its location. The flags were located in the field by a registered land surveyor and a wetland map was produced which identifies all flagged wetland complexes and ditches within the subject boundaries. Refer to the wetland map attached to the end of this report for locations. In addition, an FSA crop history slide review was undertaken prior to the delineation because the county soil survey shows somewhat poorly drained or poorly drained soils present in farmed areas on the parcel. In preparation for the slide review, the NRCS wetland map was used to locate mapped areas of Prior Converted "PC", Wetland "W", Farmed Wetland "FW", Non-Wetland "NW", etc. Ten years of imagery were examined and used in the calculation for the number of hits. The review was started by examining a wet year aerial photograph to show the maximum extent of possible wetlands. Using that potential maximum extent of wetlands as the starting point, the normal years, if present, were then used to determine the more likely location and extent of the wetlands. Wet year signatures, particularly if they showed up on multiple years, were utilized in the field to determine the location of data points to demonstrate potential adjacent upland conditions. All wet signatures, whether they showed up on wet, normal, or dry years, were used to calculate the number of hits. Eight categories of wet signatures have been identified as follows [USDA, NRCS 1998. Wisconsin Wetland Mapping Conventions-WI513.30 (c) Off-site wetland identification tools. (WI-180-VNFSAM). (3rd ed.) (Amendment WI21)]: 1) Hydrophytic vegetation which is typically seen as a different shade of green, 2) Surface water which usually shows as black or white areas, 3) Drowned-out crops identified as bare soil or mud flats, 4) Color differences that are the result of different planting dates or specific areas of the field that were not farmed in a given year, 5) Inclusionary wet areas that are part of a set-aside program, 6) Areas of greener color that are present in dry years, 7) Crop stress seen as yellow colors or sparse canopy typically seen as light green, and 8) Saturated soil that is visible on infrared (IR) slides or photographs.

Results and Discussion

* This approximately 54 acre vacant site is situated on the northeast corner of the intersection of STH 36 and STH 20 in the Village of Waterford. The site consists of active crop fields, stands of upland hardwood trees and shrubs, and wetlands. The topography varies across the site and will be discussed separately under each wetland complex described below.
* This site has not been previously delineated.
* The soil types mapped within the project boundaries are Ashkum silty clay loam (AtA), Blount silt loam (BIA), Houghton muck (Ht), Ozaukee silt loam (OzaB, OzaB2, OzaC, OzaC2, OzaD), and Water (W).
* A total of 3 roadside ditches with hydric vegetation are present within the project boundaries. They are all identified on the attached wetland map. The total length, average width, and dominant vegetation in each ditch is as follows:

Ditch \#1 is $1,932^{\prime}$ in length and an average of 3^{\prime} in width. It is dominated by narrowleaf cattail and reed canary grass. No water was present at the time of the delineation. The side slopes of the ditch are dominated by Kentucky bluegrass, Canada goldenrod, bird's foot trefoil, and Queen Anne's lace.

Ditch \#2 is 206^{\prime} in length and an average of 3^{\prime} in width. It is dominated by reed canary grass. No water was present at the time of the delineation. The side slopes of the ditch are dominated by Kentucky bluegrass, Canada goldenrod, bird's foot trefoil, and Queen Anne's lace.

Ditch \#3 is 226^{\prime} in length and an average of 3^{\prime} in width. It is dominated by narrowleaf cattail and reed canary grass. No water was present at the time of the delineation. The side slopes of the ditch are dominated by Kentucky bluegrass, Canada goldenrod, bird's foot trefoil, and Queen Anne's lace.

* Ten years of slides were analyzed for the FSA slide review. Seven areas throughout the property displayed 2 or more years of wetland signatures out of ten. Five of these areas were flagged as wetland and are discussed below.
* The Wisconsin Wetland Inventory map shows an E2H wetland in the same location as Wetland A. This complex was found and flagged in the general configuration as shown on the WWI map. The WWI shows an E2H in the same location as Wetland B. This complex was found and flagged in the general configuration as shown on the WWI map. The WWI also shows a T3K complex just offsite to the south in the extreme southeast corner of the site. A very small portion of this complex is actually on the subject property.

* The following wetland complexes were flagged and are present on the parcel:

Wetland \mathbf{A} is a 507,284 square foot (11.64 acre) shallow depressional basin that includes wet meadow, shrub carr, and shallow water marsh. This complex extends offsite to the east for undetermined distances. Flags were placed around the topo break along the upper edge of the depressional basin which coordinated closely with discernable shifts in vegetation, hydrology, and soils from hydric to upland conditions.

DP \#3 is located in Area 2 on the FSA slide review and had 7 hits out of 10 years. This area is identified as PC, but is not farmed regularly. A broken field tile is obvious and has contributed to this area developing hydric characteristics. It is dominated by giant goldenrod and hummock sedge in the herbaceous stratum. Soils meet the F6 indicator and hydrology indicators of Saturation, Geomorphic Position, and the FAC-Neutral Test are present. The adjacent upland data points (DP \#'s 1 and 2) were taken in the adjacent cropped field. This area is situated on a 3 to 5% hill that slopes south toward Wetland A. DP \#1 is located in Area 1 on the FSA slide review and had 2 hits out of 10 years. Although this area is mapped as PC, hydric soils are not present. This portion of the field had been planted just before the delineation, but no germination had taken place. The vegetation was dominated by volunteer dandelion. No hydrology indicators are present. DP \#2 is mapped as PC, but hydric soils are not present. This portion of the field had been planted just before the delineation, but no germination had
taken place. The vegetation was dominated by volunteer dandelion and Queen Anne's lace. No hydrology indicators are present.

DP \#5 is located in Area 3 on the FSA slide review and had 10 hits out of 10 years. This area is identified as PC but has not been farmed for at least 18 years and has completely reverted to wetland. It is dominated by sandbar willow in the sapling/shrub stratum and Kentucky bluegrass and reed canary grass in the herbaceous stratum. Soils meet the F3, F6, and A11 indicators and hydrology indicators of Saturation, Geomorphic Position, and the FAC-Neutral Test are present. The adjacent upland data point (DP \#4) was taken in the adjacent cropped field. This area is mapped as PC. This portion of the field had been planted just before the delineation, but no germination had taken place. The vegetation was dominated by volunteer dandelion and Queen Anne's lace. No hydrology indicators are present. This portion of the field remains effectively drained.

DP \#7 is located in the southern portion of Wetland A and is dominated by gray dogwood and nannyberry in the sapling/shrub stratum and reed canary grass in the herbaceous stratum. Soils meet the A1 indicator and hydrology indicators of High Water Table, Saturation, Geomorphic Position, and the FAC-Neutral Test are present. The adjacent upland data point (DP \#6) was taken on the bordering wooded hillslope of an approximate 5% grade leading down to the wetland. It is dominated by black cherry in the tree stratum; common buckthorn, gray dogwood, and honeysuckle in the sapling/shrub stratum; and agrimony, common buckthorn, and green ash in the herbaceous stratum. Neither soil nor the required hydrology indicators are present.

DP \#8 is located in the western portion of Wetland A and is dominated by narrowleaf cattail and reed canary grass in the herbaceous stratum. Soils meet the A3, A11, and F3 indicators and hydrology indicators of High Water Table, Saturation, Geomorphic Position, and the FAC-Neutral Test are present. The adjacent upland data point (DP \#9) was taken on the bordering wooded hillslope of an approximate 5% grade leading down to the wetland. It is dominated by northern red oak in the tree stratum; common buckthorn and gray dogwood in the sapling/shrub stratum; and sticky willy in the herbaceous stratum. Neither soil nor the required hydrology indicators are present.

Wetland B is a 10,146 square foot (0.23 acre) E2H depressional basin dominated by sandbar willow and nannyberry in the sapling/shrub stratum and narrowleaf cattail and reed canary grass in the herbaceous stratum (DP \#11). Soils meet the A11, F3, and F6 indicators and hydrology indicators present are High Water Table, Saturation, Geomorphic Position, and the FAC Neutral Test. Flags were placed at the topo breaks along the toe of the slope where the hillslope and wetland basin intersect. This coordinated closely with discernable shifts in vegetation, hydrology, and soils from hydric to upland conditions. The adjacent upland data point (DP \#10) was taken on the adjoining wooded hillslope of an approximate 5% grade leading down to the wetland. It is dominated by white oak and shagbark hickory in the tree stratum; common buckthorn in the sapling/shrub stratum; and common buckthorn in the herbaceous stratum. Neither soil nor the required hydrology indicators are present. See Photo F.

Wetland C is a 3,010 square foot (0.07 acre) ephemeral pond (DP \#13) located in a shallow depression surrounded by a second-growth upland hardwood forest. It is dominated by common buckthorn and green ash in the sapling/shrub stratum and green ash in the herbaceous stratum. Soils meet the F3 indicator and hydrology indicators of Water Stained Leaves, Saturation, Geomorphic Position, and the FAC-Neutral Test are present. Flags were placed around the topo break along the upper edge of the depressional basin. See Photo H. The adjacent upland area (DP \#14) is dominated by black cherry and northern red oak in the tree stratum; common buckthorn in the sapling/shrub stratum; and arrowleaf aster, enchanter's nightshade, and common buckthorn in the herbaceous stratum. Neither soil nor the required hydrology indicators are present.

Wetland \mathbf{D} is a 10,936 square foot (0.25 acre) shallow depression in the cropped field that had 3 hits out of 10 years (DP \#15). It is Area 4 on the FSA slide review. There is only 2% absolute cover of corn in this area which displayed significant stunting when compared to the surrounding crop. Soils meet the F3 indicator and hydrology indicators of Saturation Visible on Aerial Imagery, Saturation, and Geomorphic Position are present. The adjacent upland (DP \#16) is the cropped field displaying a healthy corn crop with no evidence of stress, yellowing, or drowned-out conditions. This area is in a mapped PC location, but neither soil nor hydrology indicators are present. See Photo G.

Wetland E is a 3,929 square foot (0.09 acre) shallow depression in the cropped field that had 4 hits out of 10 years (DP \#17). It is Area 6 on the FSA slide review. There is only 2% absolute cover of corn in this area which displayed significant stunting when compared to the surrounding crop. Soils meet the F3 indicator and hydrology indicators of Saturation Visible on Aerial Imagery, Saturation, and Geomorphic Position are present. The adjacent upland (DP \#18) is the cropped field displaying a healthy corn crop with no evidence of stress, yellowing, or drowned-out conditions. See Photo G.

Wetland \mathbf{F} is a 10,858 square foot (0.25 acre) shallow depression in the cropped field that had 8 hits out of 10 years (DP \#19). It is Area 5 on the FSA slide review. There is only 2% absolute cover of corn in this area which displayed significant stunting when compared to the surrounding crop. Carex blanda was also present at 2%. Soils meet the F3 indicator and hydrology indicators of Saturation Visible on Aerial Imagery, Saturation, and Geomorphic Position are present. The adjacent upland (DP \#18) is the cropped field displaying a healthy corn crop with no evidence of stress, yellowing, or drowned-out conditions. A small portion of the wooded area bordering Wetland F to the south (DP \#20) is a lowland hardwood forest. The WWI shows a T3K mapped on the property to the south of the subject property but a small portion of this complex is present within the subject property boundaries. It is dominated by silver maple in the tree stratum; silver maple and common buckthorn in the sapling/shrub stratum; and reed canary grass in the herbaceous stratum. Soils meet the F3, F6, and A11 indicators and hydrology indicators of Geomorphic Position and the FAC-Neutral Test are present. See Photo G.

Additional Data Points

DP \#12 (Area 7 on the FSA slide review) was taken in a mapped upland area on the NRCS map but did display 3 hits out of 10 years. The field inspection revealed that a healthy corn crop was present with no evidence of stress, yellowing, or drowned-out conditions. Neither soil nor hydrology indicators are present.

Precipitation Data

Precipitation data from the websites of the USDA Natural Resource Conservation Service, the National Oceanic and Atmospheric Administration (NOAA), and Burlington WETS station WI1205 was examined. This antecedent data was reviewed and considered while making determinations concerning the presence and/or absence of wetlands during the field investigation.

Because the antecedent precipitation was normal, direct observation of saturated soils, and even the possibility of standing water, was potentially anticipated, although not expected. Other primary indicators as well as the secondary indicators were also searched for.

Note that when a site is delineated in the first half of the month, the previous 3 months are taken into consideration.

Condition Value Dry $=1$ Normal $=2$ Wet $=3$
Product

If sum

is
6-9 drier than normal
10-14 normal
15-18 wetter than normal

Conclusion

Antecedent precipitation was normal.

Conclusion

The wetland lines staked in the field and referred to in this report are the best estimate of the wetland boundaries based on the conditions present at the time of delineation. The wetlands identified for this report may be subject to federal regulation under the jurisdiction of the U.S. Army Corps of Engineers, state regulation under the jurisdiction of Wisconsin DNR, and local jurisdiction under your local county, town, city, or village. Because this delineation was conducted by Mr. Meyer, an Assured Delineator, obtaining a concurrence letter from the Wisconsin Department of Natural Resources is not necessary. Concurrence with these wetland lines by the U.S. Army Corps of Engineers, however, must be obtained before undertaking any alterations or modifications of this property. Activities affecting wetlands or surface waters may require permits from the U.S. Army Corps of Engineers, the Wisconsin Department of

Natural Resources, and local municipal authorities. The client must obtain authorization from all proper regulatory authorities before altering, modifying, or using the property. If the required authorizations are not obtained, Wetland \& Waterway Consulting, LLC shall not be liable or responsible for any resulting damages.

Sincerely,

Attachments

1. Data points
2. Soil Survey maps
3. Wisconsin Wetland Inventory map
4. USGS topo map
5. Location map
6. Site photographs
7. FSA slide review
8. Literature cited
9. Delineation checklist
10. Wetland boundary map

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site:

Sampling Date: $\frac{6-1 / 18}{\text { Sampling Point: } \frac{14 / 4)^{5}}{2(4)}}$
Applicant/Owner:
 Investigators): MeMe (nevindel Section, Township, Range: $\mathrm{Sec} / T 3 N \frac{\text { R1GE Sec. } 36}{}$ TYNR196 Landform (hillsope_terpace, etc.): pillslupe Local relief (concave, convex, none): con vex Slope (\%): $\approx s$ Lat: Soil Map Unit Name Ashleumsituctan wan AFA- Datum: Are climatic/hydrologic conditions of the site typical or this time of the year?
Are vegetation
Are vegetation \qquad , or hydrology \qquad N naturally problematic? Are "normal circumstances" present? \qquad (If needed, explain any answers in remarks)

SUMMARY OF FINDINGS

Hydrophytic vegetation present? Hydric soil present?
Indicators of wetland hydrology present? or hydrology
\qquad
N

Remarks: (Include photo numbers here or on a separate sheet)
Field had corn stubble present From 2017 season. Just recent
peen planted at the time vF delineation.

$t l y$

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Applicant/Owner: Investigators: Menu (herfingle
 Sampling Date Point: 24.18
 Landform (hill slope, terrace, etc.): hilstope

 Are climatic/hydrologic conditions of the site typical for this time of the year?sce rc (ourfolf no, explain in remarks) $\begin{array}{ll}\text { Are vegetation } Y \text {, soil } \frac{M}{M} \text {, or hydrology } \\ \text { Are vegetation } & \text {, soil } \\ M & \text { or hydrology }\end{array}$ \qquad significantly disturbed?
Are "normal
circumstances" present?

(If needed, explain any answers in remarks)

SUMMARY OF FINDINGS

SOIL
Sampling Point: 2
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Type: C=Concentration, D=Depletion, RM=Reduced Matrix, $C S=$ Covered or Coated Sand Grains
**Location: PL=Pore Lining, M=Matrix

Hydric Soil Indicators:

Indicators for Problematic Hydric Solis:
2 cm Muck (A10) (LRR K, L, MLRA 149B Coast Prairie Redox (A16) (LRR K, L, R)
-5 cm Mucky Peat or Peat (S3) (LRR K, L, R)
-Dark Surface (S7) (LRR K, L

- Polyvalue Below Surface (S8) (LRR K, L)
——Thin Dark Surface (S9) (LRR K, L)
__Iron-Manganese Masses (F12) (LRR K, L, R)
——Piedmont Floodplain Soils (F19) (MLRA 149B)
——Mesic Spodic (TA6) (MLRA 144A, 146, 149B)
- Red Parent Material (TF2)
- Very Shallow Dark Surface (TF12)
__Other (Explain in Remarks)
*indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic

Restrictive Layer (if observed):
Type:
Depth (inches):
Remarks:
 to the no. th

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

SUMMARY OF FINDINGS

Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

SUMMARY OF FINDINGS

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)								
$\begin{gathered} \text { Depth } \\ \text { (Inches) } \\ \hline \end{gathered}$	Matrix Color (moist)		Redox Features				Texture	Remarks
$0-4$	LU/R $2 / 2$	100					siltogn	
$4-11$	JY/R2/2	55	$104 R 5 / 3$	5	C	6	silt unm	
11.14	$10 \sqrt{123} 3$	95	$109124 / 6$	5	C	01	siltornam	
4-20	10yR5/1	50	109R 4/6	10	C	M	Clam orm	
							-1ay	
*Type: $C=$ Concentration, $D=$ Depletion, RM=Reduced Matrix, $C S=$ Covered or Coated Sand Grains **Location: PL=Pore Lining, M=Matrix								
Hydric Soil Indicators: \qquad Histisol (A1) \qquad Histic Epipedon (A2) \qquad Black Histic (A3) \qquad Hydrogen Sulfide (A4) \qquad Stratified Layers (A5) \qquad Depleted Below Dark Suface (A11) \qquad \qquad Thick Dark Surface (A12) \qquad Sandy Mucky Mineral (S1) \qquad Sandy Gleyed Matrix (S4) \qquad Sandy Redox (S5) \qquad Stripped Matrix (S6) Dark Surface (S7) (LRR R, MLRA 149B) Indicators for Problematic Hydric Solis: \qquad 2 cm Muck (A10) (LRR K, L, MLRA 149B \qquad Coast Prairie Redox (A16) (LRR K, L, R) \qquad 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) \qquad Dark Surface (S7) (LRR K, L \qquad Polyvalue Below Surface (S8) (LRR K, L) \qquad Thin Dark Surface (S9) (LRR K, L) \qquad \qquad Iron-Manganese Masses (F12) (LRR K, L, R) \qquad Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) \qquad Red Parent Material (TF2) \qquad Very Shallow Dark Surface (TF12) \qquad Other (Explain in Remarks)								
Restrictive Layer (if observed): Type: \qquad Depth (inches): \qquad							Hydric soil present? Y	
Remarks:								

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

SUMMARY OF FINDINGS

hydrology Area 3 on KSA slide review.

Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

[^0]

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

SUMMARY OF FINDINGS

| Hydrophytic vegetation present?
 Hydric soil present?
 Indicators of wetland hydrology present? | Is the sampled area within a wetland? |
| :--- | :--- | :--- |
| Remarks: (Explain alternative procedures here or in a separate report.) | |

HYDROLOGY

Primary Indicators (minimum of one is required; check all that apply) \qquad Surface Water (A1) \qquad High Water Table (A2) \qquad Saturation (A3) \qquad Water Marks (B1) \qquad Sediment Deposits (B2) \qquad Drift Deposits (B3) \qquad Algal Mat or Crust (B4) \qquad Iron Deposits (B5) \qquad Inundation Visible on Aerial \qquad Imagery (B7) \qquad Sparsely Vegetated Concave \qquad Surface (B8)	Secondary Indicators (minimum of two required) \qquad Surface Soil Cracks (B6) \qquad Drainage Pattems (B10) \qquad Moss Trim Lines (B16) \qquad Dry-Season Water Table (C2) \qquad Crayfish Burrows (C8) \qquad Saturation Visible on Aerial Imagery \qquad (C9) \qquad Stunted or Stressed Plants (D1) \qquad Geomorphic Position (D2) \qquad Shallow Aquitard (D3) \qquad FAC-Neutral Test (D5) \qquad Microtopographic Relief (D4)
Field Observations: Surface water present? Yes Yes Water table present? Yos No Saturation present? (includes capillary fringe)	Indicators of wetland hydrology present?

Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Remarks: (Include photo numbers here or on a separate sheet)

SOIL								Sampling Point:	
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
$\begin{gathered} \text { Depth } \\ \text { (Inches) } \end{gathered}$	Matrix		Red Color (moist)	Fea	ures Type*	$\operatorname{Loc}^{* *}$	Texture	Remarks	
$0-11$	10423%	100					sultloan		
11-90									
	$101 / 25 / 3$	100					Suth/oam		
20-24									
	$10 y / 25 / 3$	60					clay loana		
							+		
	091244	40					,		
"Type: $C=$ Concentration, $D=$ Depletion, RM=Reduced Matrix, $C S=$ Covered or Coated Sand Grains **Location: PL=Pore Lining, M=Matrix									
Hydric Soil Indicators: \qquad Histisol (A1) \qquad Histic Epipedon (A2) \qquad Black Histic (A3) \qquad Hydrogen Sulfide (A4) \qquad Stratified Layers (A5) \qquad Depleted Below Dark Suface (A11) \qquad \qquad Thick Dark Surface (A12) \qquad Sandy Mucky Mineral (S1) \qquad Sandy Gleyed Matrix (S4) \qquad Sandy Redox (S5) \qquad Stripped Matrix (S6) Dark Surface (S7) (LRR R, MLRA 149B) Indicators for Problematic Hydric Solls: \qquad 2 cm Muck (A10) (LRR K, L, MLRA 149B \qquad Coast Prairie Redox (A16) (LRR K, L, R) \qquad \qquad 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Dark Surface (S7) (LRR K, L \qquad Polyvalue Below Surface (S8) (LRR K, L) \qquad Thin Dark Surface (S9) (LRR K, L) \qquad Iron-Manganese Masses (F12) (LRR K, L, R) \qquad \qquad Piedmont Floodplain Soils (F19) (MLRA 149B) \qquad Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Red Parent Material (TF2) \qquad Very Shallow Dark Surface (TF12) \qquad Other (Explain in Remarks) *Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic									
Restrictive Layer (if observed): Type: Depth (inches):						Hydric soil present? 1			
Double metria Fiom 20-24"									

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

SUMMARY OF FINDINGS

| Hydrophytic vegetation present?
 Hydric soil present?
 Indicators of wetland hydrology present? Y Y | Is the sampled area within a wetland? |
| :--- | :--- | :--- |

Remarks: (Explain alternative procedures here or in a separate report.)

HYDROLOGY

Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

[^1]SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Type. $C=$ Concentration, $D=$ Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains **Location: PL=Pore Lining, M=Matrix
Hydric Soil Indicators:
Indicators for Problematic Hydric Solis:

Histisol (A1)
Histic Epipedon (A2)
Black Fistic (A3)
Hydrogen Sulfide (A4)
Stratified Layers (A5)
Depleted Below Dark Suface
Sandy Mucky Mineral (S1)
Sandy Gleyed Matrix (S4)
Sandy Redox (S5)
Stripped Matrix (S6)
Dark Surface (S7) (LRR R, MLRA 149B)

Polyvalue Below Surface (SB) (LR R, MIRA 149B) Thin Dark Surface (S9) (LR R, MLRA 149B Loamy Mucky Mineral (F1) (LR K, L)
 Loamy Gleyed Matrix (F2)
Depleted Matrix (F3)
_Redox Dark Surface (F6)
Depleted Dark Surface (F7) Redox Depressions (F8)

2 cm Muck (A10) (LRR K, L, MLRA 149B Coast Prairie Redox (A16) (LRR K, L, R) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Dark Surface (S7) (LRR K, L
-Polyvalue Below Surface (S8) (LRR K, L) Thin Dark Surface (S9) (LRR K, L)
Iron-Manganese Masses (F12) (LRR K, L, R) Piedmont Floodplain Soils (F19) (MLRA 148B) Mesic Spodic (TA6) (MLRA 144A, 145, 149B)
Red Parent Material (TF2) Very Shallow Dark Surface (TF12) Other (Explain in Remarks)
*Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic

Restrictive Layer (if observed):
Type:
Depth (inches): \qquad

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

SUMMARY OF FINDINGS

Hydrophytic vegetation present? Hydric soil present? Indicators of wetland hydrology present?	is the sampled area within a wetland? Remarks: (Explain alternative procedures here or in a separate report.) y	

HYDROLOGY

[^2]

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Sampling Date: $\frac{6-1 / 16}{\text { Sampling Point: } f+9 \mathrm{LII}}$
Landform (hillsioperterpace, etc.): hillstupe

Soil Map Unit Name D Tankelesoffobsh Doa 752 Datum:
Are climatic/hydrologic conditions of the site typical for this time of the year?scercjurf(lf no, explain in remarks)
Are vegetation
Are vegetation
 , soil \qquad , or hydrology \qquad significantly disturbed?
Are "normal
circumstances" present? (If needed, explain any answers in remarks)

SUMMARY OF FINDINGS

Hydrophytic vegetation present?	Is the sampled area within a wetland?	
Hydric soil present?		
Indicators of wetland hydrology present?		If yes, optional wetland site ID:
Remarks: (Explain alternative procedures here or in a separate report.)		

HYDROLOGY

Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

SUMMARY OF FINDINGS

| Hydrophytic vegetation present?
 Hydric soil present?
 Indicators of wetland hydrology present? | Is the sampled area within a wetland? |
| :--- | :--- | :--- |
| Remarks: (Explain alternative procedures here or in a separate report.) | |

HYDROLOGY

[^3]

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

City) County:
 Sampling Date: $\frac{6 \cdot 1 \cdot 1 \mathrm{f}}{\text { Sampling Point: ft } 11 \text { wet }}$
Applicant/Owner:
 Sampling Point: $\frac{5}{1+1 G E}$ Sec .3G TYN R196

\qquad Long.: \qquad Datum:

Are climatic/hydrologic conditions of the site typical for this time of the year?sce rciourfilf no, explain in remarks)
Are vegetation \qquad , soil \qquad , or hydrology \qquad significantly disturbed?
Are "normal
circumstances" present?

(If needed, explain any answers in remarks)

SUMMARY OF FINDINGS

Hydrophytic vegetation present?
Hydric soil present?
Indicators of wetland hydrology present?
Remarks: (Explain alternative procedures here or in a separate report.)

HYDROLOGY

Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

[^4]

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

(If needed, explain any answers in remarks)

SUMMARY OF FINDINGS

Hydrophytic vegetation present?		
Hydric soil present?		
Indicators of wetland hydrology present?		Is the sampled area within a wetland?

Remarks: (Explain alternative procedures here or in a separate report.)
DP located in stopple field

HYDROLOGY

Remarks: (Include photo numbers here or on a separate sheet)
Mu sign of stress, yellowing, or drowned dat conditions

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

$\begin{gathered} \text { Depth } \\ \text { (Inches) } \end{gathered}$	Matrix		Redox Features				Texture	Remarks
	Color (moist)	\%	Color (moist)	\%	Type*	Loc**		
							1	
0-11	10912	160					silt oan	
	-1200							
							-1	
11.25	107127	100					cthn 9 am	
							chy	
"Type: $C=$ Concentration, $D=$ Depletion, RM=Reduced Matrix, $C S=$ Covered or Coated Sand Grains **Location: PL=Pore Lining, M=Matrix								

Hydric Soil Indicators:
Histisol (A1)Histic Epipedon (A2)
Black Histic (A3)
-Hydrogen Sulfide (A4)
_Stratified Layers (A5)Depleted Below Dark Sufa
Thick Dark Surface (A12)
-Sandy Mucky Mineral (S1)
Sandy Redox (S5)
_Stripped Matrix (S6) Dark Surface (S7) (LRR R, MLRA 149B)
*Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic

Restrictive Layer (if observed):
Type:
Depth (inches): \qquad

Indicators for Problematic Hydric Solls:
2 cm Muck (A10) (LRR K, L, MLRA 149B Coast Prairie Redox (A16) (LRR K, L, R) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Dark Surface (S7) (LRR K, L Polyvalue Below Surface (S8) (LRR K, L)
Thin Dark Surface (S9) (LRR K, L)
_Iron-Manganese Masses (F12) (LRR K, L, R)
——Piedmont Floodplain Soils (F19) (MLRA 149B)
-Mesic Spodic (TA6) (MLRA 144A, 145, 149B)
Red Parent Material (TF2)
__ Very Shallow Dark Surface (TF12)
——Other (Explain in Remarks)

Remarks:

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Applicant/Owner:

Sampling Date: $\frac{6-1 \cdot / f}{\text { Sampling Point: } 4 / 34 e+}$
 Landform (hillssope terrace, etc.): depressing Dago Local relief (concave, convex, none): ConCave Slope (\%): Lat.: Soil Map Unit Name () Ta a Rel siftoan $07 a \mathrm{~L}$ Datum:
Are climatic/hydrologic conditions of the site typical for this time of the year?sce report (If no, explain in remarks)
Are vegetation M, soil M, or hydrology
Are vegetation \qquad , soil T/ , or hydrology \qquad significantly disturbed?
Are "normal
(If needed, explain any answers in remarks)

SUMMARY OF FINDINGS

HYDROLOGY

Remarks: (Include photo numbers here or on a separate sheet)

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

 Sampling Date: $\frac{6-1 / 18}{\text { Sampling Point: }+144 P}$ Landform (hillsfope, terrace, etc.): eve Slope (\%): Lat.:

- Zante e sit If no, explain in remarks)
Are vegetation N, soil N, or hydrology
Are vegetation \qquad , soil \qquad , or hydrology \qquad significantly disturbed? Are "normal circumstances" present? \qquad (If needed, explain any answers in remarks)

SUMMARY OF FINDINGS

| Hydrophytic vegetation present?
 Hydric soil present?
 Indicators of wetland hydrology present? | N | is the sampled area within a wetland? | N |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

Remarks: (Explain alternative procedures here or in a separate report.)

HYDROLOGY

Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

[^5]Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains **Location: PL=Pore Lining, M=Matrix

Hydric Soil Indicators:

Histisol (A1)
_fistic Epipedon (A
— Black Histic (A3)
— Black Fistic (A3)
Stratified Layers (A5)
-D
Depleted Below Dark Sui
_Thick Dark Surface (A12)
__Sandy Mucky Mineral (S1)
__Sandy Gleyed Matrix (S4)
_Sandy Redox (S5)
__Stripped Matrix (S6)

- Dark Surface (S7) (LRR R, MLRA 149B)

Indicators for Problematic Hydric Solis:
2 cm Muck (A10) (LRR K, L, MLRA 149B Coast Prairie Redox (A16) (LRR K, L, R)

- 5 cm Mucky Peat or Peat (S3) (LRR K, L, R)

Dark Surface (S7) (LRR K, L
-Polyvalue Below Surface (S8) (LRR K, L)
——Thin Dark Surface (S9) (LRR K, L)
-_Iron-Manganese Masses (F12) (LRR K, L, R)
——Piedmont Floodplain Soils (F19) (MLRA 149B)
-Mesic Spodic (TA6) (MLRA 144A, 146, 149B)
-_Red Parent Material (TF2)
_ Very Shallow Dark Surface (TF12)
-Other (Explain in Remarks)
*Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic

Restrictive Layer (if observed):
Type:
Depth (inches):

Hydric soil present? \qquad

Remarks:
Doublematrio From 11-17"

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Applicant/Owner:
 State: WK
Sampling Date: $\frac{6-1 \cdot 19}{\text { Sampling Point: } 5 / 5 \text { hilt }}$ Section, Township, Range: Sec / TSA R1GE Sec .3G TYNR19E Investigator (s) Landform (hillsiope, terpace, etc.): dehrissina Basin Local relief (concave, convex, none): \qquad Slope (\%):
Soil Map Unit Name J/0unt silf/oum D/14 Datum:
Are climatic/hydrologic conditions of the site typical for this time of the year?scerepurflf no, explain in remarks)
Are vegetation , soil \quad, or hydrology
Are vegetation \qquad , soil , $^{\text {, or hydrology }}$ \qquad significantly disturbed?
Are "normal
circumstances" present?

(If needed, explain any answers in remarks)

SUMMARY OF FINDINGS

Hydrophytic vegetation present? Hydric soil present? Indicators of wetland hydrology present?

If yes, optional wetland site ID: \qquad

Area 4 on FsAslide review

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

SUMMARY OF FINDINGS

Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

SUMMARY OF FINDINGS

Hydrophytic vegetation present?
Hydric soil present?
Indicators of wetland hydrology present?
Remarks: (Explain alternative prpcedures here or in a separate report.)
HYDROL

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

SUMMARY OF FINDINGS

Hydrophytic vegetation present? \quad N	Is the sampled area within a wetland?	M
Hydric soil present? N		
Indicators of wetland hydrology present?	If yes, optional wetland site ID:	
Remarks: (Explain alternative procedures here or in a separate report.)		
PP/rated in cieppre	$-i c / d$	

HYDROLOGY

	uired; check all that apply) \qquad Water-Stained Leaves (B9) \qquad Aquatic Fauna (B13) \qquad Marl Deposits (B15) \qquad Hydrogen Sulifide Odor (C1) Oxidized Rhizospheres on Living \qquad Roots (C3) Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled \qquad Soils (C6) - Thin Muck Surface (C7) \qquad Other (Explain in Remarks)	required) \qquad Surface Soil Cracks (B6) \qquad Drainage Patterns (B10) \qquad Moss Trim Lines (B16) \qquad Dry-Season Water Table (C2) \qquad Crayfish Burrows (C8) \qquad Saturation Visible on Aerial Imagery \qquad (C9) \qquad Stunted or Stressed Plants (D1) \qquad Geomorphic Position (D2) \qquad Shallow Aquitard (D3) \qquad FAC-Neutral Test (D5) \qquad Microtopographic Relief (D4)
 Field Observations: Sufface water present? Yes Water table present? Yes Saturation present? Yes (includes capillary fringe)	No No Depth (inches): No No Nepth (inches):	Indicators of wetland hydrology present? \qquad

Remarks:

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

**Location: $\mathrm{PL}=$ Pore Lining, $M=$ Matrix $\mathrm{RM}=$ Reduced Matrix, $\mathrm{CS}=$ Covered or Coated Sand Grains
Hydric Soil Indicators:
Indicators for Problematic Hydric Solis:

*Indicators of hydrophytic vegetation and weltand hydrology must be present, unless disturbed or problematic

Restrictive Layer (if observed):
Type:
Depth (inches): \qquad
Remarks:

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

(If needed, explain any answers in remarks)

SUMMARY OF FINDINGS

HYDROLOGY

Primary Indicators (minimum of one is required; check all that apply) \qquad Surface Water (A1) \qquad High Water Table (A2) Saturation (A3) \qquad Water Marks (B1) \qquad Sediment Deposits (B2) \qquad Drift Deposits (B3) \qquad Algal Mat or Crust (B4) \qquad Iron Deposits (B5) \qquad Inundation Visible on Aerial Imagery (B7) \qquad Sparsely Vegetated Concave Surface (B8) \qquad Water-Stained Leaves (B9) \qquad Aquatic Fauna (B13) \qquad Marl Deposits (B15) \qquad Hydrogen Sulfide Odor (C1) \qquad Oxidized Rhizospheres on Living \qquad Roots (C3) \qquad Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled \qquad Soils (C6) \qquad Thin Muck Surface (C7) \qquad Other (Explain in Remarks)	Secondary Indicators (minimum of two required) \qquad Surface Soil Cracks (B6) \qquad Drainage Patterns (B10) \qquad Moss Trim Lines (B16) \qquad Dry-Season Water Table (C2) \qquad Crayfish Burrows (C8) \qquad Saturation Visible on Aerial Imagery \qquad (C9) \qquad Stunted or Stressed Plants (D1) \qquad Geomorphic Position (D2) \qquad Shallow Aquitard (D3) \qquad FAC-Neutral Test (D5) \qquad Microtopographic Relief (D4)
Field Observations: Surface water present? Yes Yes Water table present? No No Saturation present? Yes (includes capillary fringe) Dopth (inches):	Indicators of wetland hydrology present? \qquad
Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspections), if available:	
Remarks: pits oud of bo years ra side rev	$i c \omega$

[^6]Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Restrictive Layer (if observed):
Type:
Depth (inches): \qquad
Remarks:

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

SUMMARY OF FINDINGS

Hydrophytic vegetation present? Hydric soil present? Indicators of wetland hydrology present?	y	is the sampled area within a wetiand?

Remarks: (Explain alternative procedures here or in a separate report.)

HYDROLOGY

Restrictive Layer (if observed):
Type:
Depth (inches): \qquad

Remarks:

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AtA	Ashkum silty clay loam, 0 to 2 percent slopes	12.6	23.9%
BIA	Blount silt loam, 1 to 3 percent slopes	1.9	3.7%
Ht	Houghton muck, 0 to 2 percent slopes	4.1	7.7%
OzaB	Ozaukee silt loam, 2 to 6 percent slopes	20.4	38.6%
OzaB2	Ozaukee silt loam, 2 to 6 percent slopes, eroded	6.6	12.5%
OzaC	Ozaukee silt loam, 6 to 12 percent slopes	0.1	0.2%
OzaC2	Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.6	10.6%
OzaD	Ozaukee silt loam, 12 to 20 percent slopes	1.5	2.8%
W	Water	0.0	0.0
Totals for Area of Interest		52.7	100.0%

Report-Hydric Soil List - All Components

Hydric Soil List - All Components-WI601-Kenosha and Racine Counties, Wisconsin					
Map symbol and map unit name	Component/Local Phase	Comp. pct.	Landform	Hydric status	Hydric criteria met (code)
AtA: Ashkum silty clay loam, 0 to 2 percent slopes	Ashkum-Drained	85-100	End moraines, ground moraines	Yes	2
	Peotone-Drained	0-9	Depressions on ground moraines	Yes	2
	Orthents, clayey	0-3	Ground moraines,lake plains	No	-
	Urban land	0-3	Ground moraines	No	-
BIA: Blount silt loam, 1 to 3 percent slopes	Blount	95	Moraines	No	-
	Ashkum	5	Depressions	Yes	2,3
Ht: Houghton muck, 0 to 2 percent slopes	Houghton-Muck	84-95	Depressions	Yes	1,2,3
	Houghton-Ponded	2-5	Depressions	Yes	1,3
	Palms	1-3	Lakebeds (relict)	Yes	1,3
	Adrian	1-3	Lakebeds (relict)	Yes	1,3
	Edwards	1-2	Depressions	Yes	1,3
	Willette-Muck	0-3	Depressions	Yes	1,3
OzaB: Ozaukee silt loam, 2 to 6 percent slopes	Ozaukee	88-100	End moraines, ground moraines	No	-
	Pewamo-Drained	0-7	Depressions on ground moraines, drainage ways on ground moraines	Yes	2
	Ashkum-Drained	0-7	End moraines, ground moraines	Yes	2
	Urban land	0-5	Ground moraines	No	-
OzaB2: Ozaukee silt loam, 2 to 6 percent slopes, eroded	Ozaukee-Eroded	88-100	End moraines,ground moraines	No	-
	Ashkum-Drained	0-7	End moraines, ground moraines	Yes	2
	Pewamo-Drained	0-7	Depressions on ground moraines,drainage ways on ground moraines	Yes	2
	Urban land	0-5	Ground moraines	No	-
OzaC: Ozaukee silt loam, 6 to 12 percent slopes	Ozaukee	88-100	End moraines,ground moraines	No	-
	Blount-Lake mighican lobe	0-9	End moraines, ground moraines	No	-
	Urban land	0-5	Ground moraines	No	-

Hydric Soil List - All Components-WI601-Kenosha and Racine Counties, Wisconsin					
Map symbol and map unit name	Component/Local Phase	Comp. pct.	Landform	Hydric status	Hydric criteria met (code)
OzaC2: Ozaukee silt loam, 6 to 12 percent slopes, eroded	Ozaukee-Eroded	88-100	End moraines, ground moraines	No	-
	Blount-Lake mighican lobe	0-7	End moraines, ground moraines	No	-
	Urban land	0-5	Ground moraines	No	-
	Ozaukee-Severely eroded	0-5	End moraines, ground moraines	No	-
OzaD: Ozaukee silt loam, 12 to 20 percent slopes	Ozaukee	91-100	End moraines, ground moraines	No	-
	Blount-Lake mighican lobe	0-9	End moraines, ground moraines	No	-
W: Water	Water	100	-	Unranked	-

Data Source Information

Soil Survey Area: Kenosha and Racine Counties, Wisconsin Survey Area Data: Version 14, Oct 6, 2017

PHOTOGRAPHS

Photo A...................Typical view of upland cropped fields in mapped PC areas throughout the site.

Photo B...................View of site conditions at DP \#3, Wetland A.

Photo C................View of site conditions at DP \#5, Wetland A. This area is mapped as PC but has

Photo D
Viewing north across DP \#7, Wetland A.

Photo E .Viewing southeast across DP \#8, Wetland A.

Photo F .Viewing southwest across Wetland B in vicinity of DP \#11.

Photo G...................Typical view of drowned-out conditions at DP \#'s 15, 17, and 19, Wetlands D, E, and F .

Photo H....................Typical view of Wetland C.

WETLAND DOCUMENTATION RECORD

Remotely Sensed Data Summary

Farm Service Agency (or Other) Aerial Slide Data

$\mathrm{N}=$ No wetness signature NC = not cropped (hay, pasture, idle, etc.)
Manipulation (year of installation)
$7 \mathrm{a}=$ ditched
$7 b=$ tiled
$7 \mathrm{c}=$ filled
7d = tree/brush removal
8 = plowed/tilled

Does slide/air photo data indicate the site is a wetland? DYes ON o

DRAFT - Subiect To Change WETLAND DELIAEATIONS ARE FOR FOOO SECLRITY ACT PURPOSES ONLY

LITERATURE CITED

Curtis, John. 1971. The Vegetation of Wisconsin. University of Wisconsin Press, Madison, Wisconsin. 173 pp .

Eggers, Steve and Donald Reed. 2011. Wetland Plants and Plant Communities of Minnesota and Wisconsin - 3rd Edition. St. Paul District, U.S. Army Corps of Engineers, St. Paul, MN 478 pp .

Peterson, Roger and Margaret McKenny. 1968. A Field Guide to Wildflowers of Northeastern and Northcentral North America. Houghton Mifflin Company, Boston, Mass. 420 pp.

Swink, Floyd and Gerould Wilhelm. 1994. Plants of the Chicago Region. The Morton Arboretum, Lisle, Illinois. 921 pp.

WETLAND DELINEATION CONFIRMATION REQUEST CHECKLIST

Introductory Section

- Why the delineation was undertaken
- Date the field work was completed
- Who conducted the fieldwork
- Qualifications

Methods used during the wetland delineation

- Description of methods
- Sources Reviewed (WWI mapping, Soil Survey, etc.)
- Description of any site specific agency guidance (site meetings, etc.)

Results and Discussion

- Antecedent hydrologic condition analysis
- Previous wetland delineation mapping
- Existing environmental mapping (WWI mapping, Soil Survey, etc.)
- Amount and types of wetland located within the project area
- Discussion explaining how the wetland/upland boundary was differentiated
- Disturbed and problematic areas encountered during the delineation
- Other water resources located in the project area (navigable streams, etc.)

> Q
0
0
0
0
1
n
n
0
0

[^0]: Remarks: (Include photo numbers here or on a separate sheet)

[^1]: Remarks: (Include photo numbers here or on a separate sheet)

[^2]: Remarks: (Include photo numbers here or on a separate sheet)

[^3]: Remarks: (Include photo numbers here or on a separate sheet)

[^4]: Remarks: (Include photo numbers here or on a separate sheet)

[^5]: Remarks: (Include photo numbers here or on a separate sheet)

[^6]: Remarks: (Include photo numbers here or on a separate sheet)

